

Journal of Fluorine Chemistry 71 (1995) 221-222

Fluorine in ligands: obvious and not-so obvious effects

Robert W. Parry *, John M. Higashi 1

Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA

Keywords: Ligand exchange; Fluorine substitution; π -Acid ligands; NMR spectroscopy

When electronegative fluorine replaces a group or element on a ligand, the change alters the coordinating properties of the ligand. For example, PF_3 is a π -acid ligand as opposed to $P(CH_3)_3$ which is a strong σ -donor. Today these effects are widely accepted and are considered obvious. This paper considers replacements of NR_2 groups by fluorines in $P(NR_2)_3$. The resulting compound is used as a ligand to attack $Fe(CO)_5$.

Carbon monoxide in Fe(CO)₅ is known to be kinetically inert as far as CO substitution is concerned. Thus, the exchange reaction Fe(CO)₅ + 13 CO has a half-life of 4 years [1]. Similarly, the substituted iron carbonyl

shows no evidence of ¹³CO exchange over a period of weeks at room temperature. On the other hand, *removal* of *fluoride* from the ligand, L, gives a cationic species which undergoes complete statistical exchange with ¹³CO in 0.5 h at 25 °C.

This can be rationalized in terms of the reduced multiplebond character of the Fe-CO linkage and labilization of the CO which is axial to the cationic phosphorus ligand [2].

Since CO and PF₃ are both π-acid ligands, it appeared that the exchange reaction might be a useful route to introduce PF₃ into the coordination sphere of Fe(CO)₅ in place of CO. A reaction using PF₃ under conditions comparable to those used for CO exchange gave the product Fe(CO)₄PF₃ after 24 h. No further reaction was observed. Substitution of only one CO by PF₃ was somewhat unexpected even though PF₃ is known to react much more slowly than the CO in metal–carbonyl-type systems. The equation for the process is:

When P[N(CH₃)₂]₃ was used as the attacking ligand in place of PF₃ for the reaction with [(CO)₄FeL]⁺ a different process was observed. The equation is:

The $P[N(CH_3)_2]_3$ attacked the phosphorus at -80 °C to give the compound shown (above). No CO dis-

^{*} Corresponding author.

¹ Current address: Math/Science Department, Solano Community College, Suisun City, CA 94585, USA.

placement occurred under the conditions used. When the temperature was raised to -45 °C, the double-ligand was displaced by the excess $P(NR_2)_3$ to give $(CO)_4FeP(NR_2)_3$ and the ionic material:

When $PF(NR_2)_2$ was used as the attacking ligand instead of $P(NR_2)_3$, the reaction was similar to that for $P(NR_2)_3$. The final products were:

With PF₂NR₂ the reaction resembled the PF₃ reaction in part, but there were significant differences. The final product was (F₂PNR₂)₃Fe(CO)₂. Three intermediate products could be identified. All identifications were by ¹⁹F and ³¹P NMR. Differences are attributed to differences in both physical and chemical properties of the attacking ligands [3].

References

- F. Basolo and R.G. Pearson, Mechanism of Inorganic Reactions, 2nd edn., Wiley, New York, 1967, pp. 541, 544.
- [2] D.W. Bennett and R.W. Parry, J. Am. Chem. Soc., 101 (1979)
- [3] J.M. Higashi, Ph.D. Dissertation, University of Utah, Salt Lake City, 1985.